
Application Note 135

AN135-1

an135f

February 2012

commands because PMBus/SMBus provide timeouts to
prevent bus hangups and optional packet error checking
(PEC) to ensure data integrity.

In general, a master device configured for I2C communi-
cation is used for PMBus communication with little or no
change to hardware or firmware. Repeated starts (restarts)
are not supported by all I2C controllers but are required for
PMBus/SMBus reads. If a general purpose I2C controller
is used, check that repeated starts are supported.

For a full description of the extensions and exceptions
PMBus makes to SMBus, refer to PMBus Specification
Part 1 Revision 1.1: Paragraph 5: Transport.

For a full description of the differences between SMBus
and I2C, refer to System Management Bus (SMBus) Speci-
fication Version 2.0: Appendix B—Differences Between
SMBus and I2C.

Quick Overview of PMBus vs SMBus vs I2C

The power management bus (PMBus) protocol is built
upon the system management bus (SMBus) which builds
upon the 2-wire open drain communication interface inter-
integrated circuit (I2C or IIC).

PMBus dictates a maximum bus speed of 400kHz and has
built-in timeouts important for critical systems. Though
clock stretching is fully PMBus compliant, it is not required
with the LTC3880 if operating at bus speeds at or below
100kHz and the guidelines below are followed. Because
of the built-in timeouts, a minimum bus speed of 10kHz
exists for all PMBus devices.

Some of the key differences between PMBus and SMBus
in relation to the low level bus are:
•	 400kHz	maximum	bus	speed	vs	100kHz	SMBus	limit
•	 Group	protocol
•	 Block	reads	up	to	255	bytes	in	length	vs	32	byte	SMBus	
 limit

INTRODUCTION

The LTC®3880 is a dual output PolyPhase® step-down DC/DC
controller with integrated digital power system manage-
ment. The LTC3880 can easily be controlled through a
PMBus interface, which builds upon I2C/IIC at speeds up
to 400kHz. System telemetry data can be obtained quickly
and painlessly with simple polling functions. This exposes
all important and critical information to the system devel-
oper such as the voltage and current readings for the input
and both outputs, temperature, fault conditions, general
status information, and more.

This application note discusses the design requirements
in regards to implementing robust firmware capable of
interacting with the LTC3880.

DOCUMENT OVERVIEW

This document is broad in scope. If you already feel comfort-
able with I2C/SMBus/PMBus and the transaction structure
for the command set, then you may wish to skip ahead to
the Communicating Robustly with the LTC3880 section.

REFERENCE DESIGN OVERVIEW

The PMBus master design used in this application note
is an off-the-shelf microcontroller (Microchip PIC32MX),
but	 any	 microcontroller,	 FPGA,	 or	 other	 device	 with	 a	
programmable PMBus/I2C interface can be used. All the
code examples are written for the PIC32MX architecture,
but they are easily adapted to other target designs.

PMBus vs SMBus vs I2C/IIC INTRODUCTION

The power management bus (PMBus) 2-wire interface is
an incremental extension of the system management bus
(SMBus). SMBus is built upon I2C with some differences
in timing, DC parameters, and protocol. The PMBus/
SMBus protocols are more robust than simple I2C byte

Implementing Robust PMBus System Software for the
LTC3880
Nick Vergunst

L, LT, LTC, LTM, Linear Technology, PolyPhase and the Linear logo are registered trademarks
and LTpowerPlay is a trademark of Linear Technology Corporation. All other trademarks are the
property of their respective owners.

Application Note 135

AN135-2

an135f

Multiple starts without stops (i.e. repeated starts) are used
as per PMBus/SMBus specification. The host processor
shall have support for these features to read from PMBus
products such as the LTC3880.

PMBus Transaction Formats

PMBus has several transaction formats that should be
supported: send byte, write byte, write word, read byte,
and read word. For full support it is recommended you also
support the PMBus read block transaction (up to 255 bytes).

The read block transaction is used to read more than three
byte data streams such as the real time clock, fault log, and
identification strings. Master devices should also support
non-SMBus defined PMBus group command protocol.

In addition, all of these transaction formats may include a
packet error checking (PEC) byte at the end of the stream
to verify the validity of the data stream as a whole.

The required data ordering specifies the most significant
bit (MSb) of the least significant byte (LSB) is always sent
first. This makes the byte order endianness little-endian
and the bit order endianness big-endian.

The eighth bit in the address byte indicates whether it
is a read (value of 1) or a write (value of 0). Anytime an
acknowledge is expected and not received, a communica-
tion error has occurred and the transaction is cancelled.

The gray sections in the PMBus sequence diagrams below
indicates that the slave should be pulling the SDA line low
to acknowledge (ACK) receipt of the byte.

PMBus Send Byte

The send byte transaction is used to send a simple com-
mand to the device. A send byte transaction transfers a
command with no data. The CLEAR_FAULTS command
that clears the current fault flags present in the system is
an example of such a command.

A start bit, followed by the 7-bit slave address of the
LTC3880 and finished by a write bit (0-value) to indicate
a write make up the first stage of the transaction. If the
slave ACKs the address, then the host sends the 8-bit
command followed by a stop condition.

PMBus Write Byte

The write byte transaction is used to send single byte
data	to	the	LTC3880.	The	PAGE	command	that	changes	
the current page of the device is an example of this type
of transaction. Similar to the send byte transaction above,
the series of start bit, 7-bit slave address of the LTC3880
with write bit (0-value), command byte, and finally the
8-bit data byte.

NOTE: The term endian or endianness refers to the
ordering of individually addressable subcomponents
within the representation of a larger data. These
subcomponents can be bits, bytes, words, or an
arbitrary length block.

The usual contrast is whether the most significant
or least significant byte is ordered first —i.e. at the
lowest byte address— within the larger data item.
A big-endian machine stores the most significant
byte first, and a little-endian machine stores the
least significant byte first. In these standard forms,
the bytes remain ordered by significance.

Big-endian is similar to how numbers are written
in	 arabic	 numerals.	 Given	 the	 number	 5000	 we	
can break down the subcomponent to be a digit.
Further we read this as big-endian style with the 5
being the most significant subcomponent giving us
five thousand.

To transmit 0xA1B2C3D4 in a big-endian system,
you would transfer 0xA1, then 0xB2, then 0xC3, and
finally 0xD4. In a little-endian system like SMBus/
PMBus you would transfer 0xD4, then 0xC3, then
0xB2, and finally 0xA1.

To transmit 0xA1 (0b10100001) in a big-endian bit
order like SMBus/PMBus you would transfer 0b1
first (followed by 0b0, 0b1, 0b0, 0b0, 0b0, 0b0, and
0b1). In a little-endian bit order it would be 0b1, 0b0,
0b0, 0b0, 0b0, 0b1, 0b0, and then 0b1.

SLAVE ADDRESS WrS A P
AN135 F01

1 1

COMMAND CODE

81 7 1 1

A

SLAVE ADDRESS Wr COMMAND CODEA A P
AN135 F02

S

7 8 1

DATA BYTE

81 1 1 11

A

Figure 1. PMBus Send Byte
Figure 2. PMBus Write Byte

Application Note 135

AN135-3

an135f

PMBus Write Word

The write word transaction is used to send a single word
of data (two bytes) to the LTC3880. The VOUT_COMMAND
command is an example of such a transaction. Similar to
the write byte command, the only difference is that after
the third acknowledge (the low data byte), the high byte
is sent in addition.

PMBus Read Byte

The read byte starts out like a normal I2C write transac-
tion by sending the address and the write bit. Sending a
write bit for a read command can be somewhat confusing
for a novice user. See Note regarding Reading PMBus/
SMBus. The second byte contains the command code,
then a repeated start is sent, and following that is the
address and read bit signalling the device to return data
for the specified command code. The slave responds by
transmitting the byte value requested and the host does
not acknowledge (NACK) the data byte. The host NACKing
the data may be confusing initially, but it is defined that
way to convey that the host is finished asking for data.
If during the transaction, the host NACKs the data, the
LTC3880 stops transmitting and does not issue a CML fault.

PMBus Read Word

The read word transaction also starts out like a normal
I2C write transaction by sending the address and the write
bit. The second byte contains the command code, then a
repeated start is sent, and following that is the address and
read bit signalling the device to return data for the speci-
fied command code. The slave responds by transmitting
the value requested low byte first and high byte last. The
host acknowledges (ACK) the reception of the low byte
and does not acknowledge (NACK) the high byte.

PMBus Read Block

The read block transaction is used to read a block stream
of data (up to 255 bytes) from the device. The MFR_
FAULT_LOG	command	is	an	example	of	such	a	transaction.	
Similar to the other read commands, but the first data
byte returned represents the byte count remaining for
the block read. The host should then read the slave until
byte-count data bytes are read in. The host acknowledges
(ACK) the reception of all but the final byte and does not
acknowledge (NACK) the final byte.

SLAVE ADDRESS COMMAND CODE DATA BYTE LOWWr A A A P
AN135 F03

S

7 8 8 1

DATA BYTE HIGH

81 1 1 1 11

A

SLAVE ADDRESS COMMAND CODE SLAVE ADDRESSSrAAS Rd N P
AN135 F04

Wr

7 8 8 1

DATA BYTE

81 11 1 1 1 11

A

COMMAND CODE SLAVE ADDRESS Rd AAAWr N P
AN135 F05

SrS

87 7 8 1

DATA BYTE HIGH DATA BYTE LOW

81 1 11 1 11 11

SLAVE ADDRESS A

Figure 3. PMBus Write Word

Figure 4. PMBus Read Byte

Figure 5. PMBus Read Word

Figure 6. PMBus Read Block

SLAVE ADDRESS SLAVE ADDRESSCOMMAND SrAAS R/W
AN135 F06

R/W BYTE CT A A • • • • •

• • • • •• • • • • DATA PNDATA A

Application Note 135

AN135-4

an135f

Reading PMBus/SMBus PEC byte matches the internally computed PEC byte, the
LTC3880 ACKs the transaction and the data is accepted
as valid. The data is then copied to the write command
data buffer (See PMBus Communication and Command
Processing section of the data sheet). If the PEC bytes
mismatch, the LTC3880 will NACK the transaction and a
CML fault is logged to indicate the failure. In addition to
the NACK and fault response, the LTC3880 does not act
upon the data received. If PEC_REQUIRED is enabled and
a PEC byte is not sent, the LTC3880 will ACK the command
but not process the data.

When PEC_REQUIRED is disabled and a write with a PEC
byte is transmit to the LTC3880 it will disregard this PEC
byte and act on the transaction as if the PEC byte was not
transmitted.

For reads with PEC while PEC_REQUIRED is enabled, if
the host does not send a stop bit and continues to clock
out data, the slave will return an extra byte that is the PEC
value as calculated by the LTC3880. The host may com-
pare its computed PEC value to the received PEC value. If
the values match, the data is valid. If the PEC values are
mismatched, then the data is not valid. The slave does
not know or care if the received PEC is invalid or different
than what the master computed. Because of the SMBus/
PMBus read transaction convention the master’s NACK of
the data indicates that it is finished reading data, not that
the PEC is invalid. Even if the PEC is valid and matches,
the host must still NACK the last byte of the transaction.

Linear Numerical Formatting [L11 & L16]

The term Linear Data Format as defined in the PMBus
Specification Part II Section 7.1 is one of two numerical
data formats under the name Linear Numerical Formatting.

We have named the format as described in Section 7.1
of the PMBus Specification Part II as the LinearFloat5_11
(L11) format. This format encapsulates a floating point
number as a 5-bit signed exponent (power of two) and an
11-bit signed mantissa in a single 16-bit word. This is a
very useful format that provides reasonably high precision
and high dynamic range. In other words, it is capable of
representing both very small and very large numbers, both
negative and positive. This eliminates the need for special
lookup tables or register dependent numeric transforms in
your code to convert internal codes into meaningful units
like volts, amps, and others.

Multi-Master Mode

There exists the option to have a multi-master system
within PMBus/SMBus where multiple devices can initiate
transactions and provide the clock signal. The LTC3880
and family fully supports this, and if this is an option you
are contemplating, special consideration should be given
to the selection of your host IC’s and the firmware written
for them. One possible reason to build in support for such
an option is in debug scenarios where you can have both an
I2C debugger and your system connected at the same time
gathering telemetry and status pseudo-simultaneously.

Packet Error Checking (PEC)

All transactions may have an optional PEC byte appended
to the end before the stop bit. If the PEC_REQUIRED bit of
MFR_CONFIG_ALL	register	is	set,	then	all	writes	must	be	
accompanied by the matching PEC computation.

For writes when PEC_REQUIRED is enabled, the host must
compute the PEC value and append it to the end of the
transaction between the last byte’s acknowledge and the
stop bit. The LTC3880 then compares this PEC byte with
its own internally calculated PEC value based on the data
received during the current transaction. If the received

NOTE: A very common mistake made by firmware
engineers familiar with I2C but unfamiliar with PMBus/
SMBus is attempting to read PMBus registers by
immediately sending the address and read bit after
the first start condition. This is incorrect.

The most common error made by I2C experienced
firmware engineers shown here:

Though the above protocol would be a valid I2C read,
it is NOT a valid SMBus Read. PMBus/SMBus read
byte/word transactions always start with the address
and write bit as shown in the LTpowerPlay™ protocol
diagrams above, not with the address and read bit.

71 1

SLAVE ADDRESSSTART READ

7’b1011_100 1’b1

Application Note 135

AN135-5

an135f

We have named another linear format as the LinearFloat16
(L16). This format has a 16-bit unsigned mantissa that is
multiplied by a separate exponent to determine the value.
This exponent is stored in the five least significant bits of
the VOUT_MODE register. As examples, the LTC2978 uses
a read only 2–13 exponent value while the LTC3880 uses
a read only 2–12 exponent value.

All	sign-formats	are	standard	two’s	compliment.	Generally,	
output voltage related registers (such as READ_VOUT
and VOUT_COMMAND) use the L16 format whereas
non-output-voltage related registers generally use the
L11 format.

Code Examples

The following code examples illustrate the simplicity of
these numeric formats. These examples are written for
clarity, and not necessarily for performance. Your specific
implementation may differ depending on your platform
and system requirements.

The examples are written in C for a PIC32 based micro-
controller compiled with the C32 compiler.

Example Code License

While we have made every effort to ensure that this ex-
ample code operates in the manner described, we do not
guarantee operation to be error free. This code is provided
for purposes of understanding only, not as a working
implementation for any physical system.

Upgrades, modifications, or repairs to this example code
will be strictly at the discretion of LTC. We do not guarantee
that you will be able to use this software successfully in
your system.

The software and related documentation are provided AS
IS and without warranty of any kind and Linear Technol-
ogy Corporation expressly disclaims all other warranties,
express or implied, including, but not limited to, the implied
warranties of merchantability and fitness for a particular
purpose. Under no circumstances will LTC be liable for
damages, either direct or consequential, arising from the
use of this code or from the inability to use this code, even
if we have been informed in advance of the possibility of
such damages.

Code Example for L11 to Float
/*
 * Convert a LinearFloat5_11 formatted word
 * into a floating point value
 */
float L11_to_float(uint16 input_val)
{
 // extract exponent as MS 5 bits
 int8 exponent = input_val >> 11;

 // extract mantissa as LS 11 bits
 int16 mantissa = input_val & 0x7ff;

 // sign extend exponent from 5 to 8 bits
 if(exponent > 0x0F) exponent |= 0xE0;

 // sign extend mantissa from 11 to 16 bits
 if(mantissa > 0x03FF) mantissa |= 0xF800;

 // compute value as mantissa * 2^(exponent)
 return mantissa * pow(2,exponent);
}

Code Example for Float to L11
/*
 * Convert a floating point value into a
 * LinearFloat5_11 formatted word
 */
uint16 float_to_L11(float input_val)
{
 // set exponent to -16
 int exponent = -16;

 // extract mantissa from input value
 int mantissa =
 (int)(input_val / pow(2.0, exponent));

 // Search for an exponent that produces
 // a valid 11-bit mantissa
 do
 {
 if((mantissa >= -1024) &&
 (mantissa <= +1023))
 {
 break; // stop if mantissa valid
 }
 exponent++;
 mantissa =
 (int)(input_double / pow(2.0, exponent));
 } while (exponent < +15);

 // Format the exponent of the L11
 uint16 uExponent = exponent << 11;

 // Format the mantissa of the L11
 uint16 uMantissa = mantissa & 0x07FF;

 // Compute value as exponent | mantissa
 return uExponent | uMantissa;
}

Application Note 135

AN135-6

an135f

ANALOG CONSIDERATIONS

When communicating with the LTC3880 at 100kHz or
greater (regardless of clock stretching being enabled or
not), the bus pull-up resistors must be sized small enough
to allow fast pull-up times to achieve the required PMBus
setup and hold times.

For a detailed explanation, please reference Table 1
SMBus AC Specification from the System Management
Bus (SMBus) Specification Version 2.0 and Table 2 Tim-
ing Parameters for Higher Speed Operation from the
PMBus Power System Mgt Protocol Specification – Part
1 – Revision 1.1.

Figure 7 shows a digital I2C representation of the beginning
of a PMBus transaction. TRISE is the time it takes for SCL
or SDA to get from a low state to a high state on the bus,
and we recommend a maximum time constant of 100ns
RC up to assure a 300ns rise time.

Code Example for L16 to Float
/*
 * Convert a LinearFloat16 formatted word
 * into a floating point value
 */
float L16_to_float(uint8 exp, uint16 input_val)
{
 int8 exponent = exp;
 int16 mantissa = input_val;

 // sign extend exponent
 if(exponent > 0x0F) exponent |= 0xE0;

 // sign extend mantissa
 if(mantissa > 0x03FF) mantissa |= 0xF800;

 // compute value as mantissa * 2^(exponent)
 return mantissa * pow(2,exponent);
}

Code Example for Float to L16
/*
 * Convert a floating point value into a
 * LinearFloat16 formatted word
 */
uint16 float_to_L16(float input_val)
{
 // The length of the L16 value
 // Read the VOUT_MODE register of your
 // particular device for the value to use
 // LTC3880 = -12
 // LTC2978 = -13
 int L16_Length = -12;

 // set exponent to 2^L16_Length
 float exponent = pow(2.0, L16_Length);

 // convert value to uint16 and return
 return (uint16)(input_val / exponent);
}

Figure 7. SMBus Timing Measurements

SMBCLK

SMBDAT

VIH

VIL

VIH

VIL

P S PS

AN135 TD01

tHIGH

tR tF
tLOW

tHQ(STA) tHQ(DAT) tSU(DAT) tSU(STA) tSU(STQ)

tBUF

Tau RC ⇒ 1t = 63.2%
 2t = 86.5%
 3t = 95.0%
Thus 1T = 100ns so that a rise time of 95% is 300ns.

The faster the better, but there are practical limitations on
achieving these speeds as will be discussed below. Once
the clock is high, there is a minimum time (600ns) it must
be high before allowing it to go low again. Meanwhile SDA
must be stable for a minimum of TSETUP (100ns) before
SCL begins pulling low. TFALL is the time it takes to pull
the clock low and a maximum time of 100ns is recom-

Application Note 135

AN135-7

an135f

mended. Once SCL is low, it must remain pulled low for
a minimum of 1.3µs before being released. Likewise SDA
must remain stable for a minimum of THOLD (recommen-
dation of 300ns) after SCL reaches a low state to ensure
data transmission.

One factor that must be addressed when dealing with
PMBus and I2C in general is that while the bus is actively
pulled down, it is released passively. This means to get
SDA or SCL from a low state to a high state, the bus must
charge up all capacitance on the bus through a small valued
resistor with a current of no more than 3mA.

Figure 8 shows a square wave driving a FET gate to toggle
the I2C line. The I2C line is pulled up to 3.3V via a 1k resis-
tor, the minimum allowed. There is a 100pF capacitor in
parallel with the pull-up resistor to simulate the cumula-
tive parasitic capacitance caused by the active pull-downs
themselves for all devices on the bus as well as all the PCB
traces between devices. This combination gives us a time
constant of 100ns which is the maximum recommended

rise time. From this waveform you can surmise that your
bus when routed together must not have more than 100pF
of capacitance or else the rise times will creep above 100ns
possibly causing timing problems and bus errors.

Also take note that the larger the number of devices on
the I2C bus (any device, not just LTC3880’s) there are,
the higher the capacitance present on the SCL and SDA
lines. The designer must account for this to ensure the
rise times, fall times, setup times, and hold times are met.

Figure 10 shows a problem scenario that can result from
too much capacitance on the I2C lines. The waveforms are
not square because of the passive release of the SCL and
SDA lines. The start bit and the first two data bits appear
to be OK because the fall time, setup time and hold times
are met. The SCL line meets the minimum clock hold high
and low times as well as marginally meeting the minimum
rise time specifications. However, for some reason, (such
as suboptimal PCB trace routing) SDA has slightly more
parasitic capacitance. The rise times for SDA are longer
than specified. So when clocking normally and transitioning
from a logic-0 to a logic-1, the setup and hold times are
violated. When the host clocks SCL by pulling it low, the
data should have already been stable for TSETUP and remain
so for at least THOLD afterwards. During the THOLD region
is when the line is sampled for the data value. Because the
data line is still rising, the final value that will be read on
the bus is indeterminate. As one approaches the timing
limits, any little variation on the bus can potentially cause
erroneous transactions or complete bus failure. Care must
be taken to ensure rise times are met along with all other
PMBus timing specifications. A 100ns margin for the rise
and fall times should be observed.

The use of bus accelerators such as the LTC4311 can
help by actively pulling up the bus when it detects a rising
edge, but the resistors must still be sized appropriately to

SCL

SCL

SDA

SDA

IDEAL

ACTUAL

00S • • • •

AN135 TD03

1

VHIGH

VHIGH

START

SETUP AND
HOLD TIME
VIOLATED

PROBLEM
AREA

‘1’ ‘0’ ?

AN135 TD04

Figure 8.

Figure 9. Figure 10.

33V

0V FET GATE
I2C LINE

PULL-DOWN I2C
100ns

RELEASE I2C

ACTUALLY
RELEASED

DN135 TD02

3.3V
1k

100pF
PARASITIC

+–

Application Note 135

AN135-8

an135f

account for bus variations and the number of devices on
the bus. If the bus takes too long to reach the accelerator’s
threshold, then the timing of the actively pulled edge may
be too late and the transaction will fail.

Communicating Robustly with the LTC3880

Implementing a robust communication layer between the
LTC3880 and your host controller is a straightforward task
with some caveats that must be followed to ensure proper
behavior. The LTC3880 also supports an optional, speed-
limited communication mode for non-PMBus-compliant
or less sophisticated host devices (bus masters) that may
be used trading off bus speed for firmware simplicity.

ROBUST HIGH-SPEED COMMUNICATION

Command Order

The LTC3880 has a one deep buffer to hold the last data
written for each supported command prior to processing
as shown in Figure 11 Write Command Data Processing.
When the LTC3880 receives a new command from the bus,
it copies the data into the write command data buffer and
indicates to the internal processor that this command data
needs to be fetched and converted to its internal format
so that the command can be executed.

Two distinct parallel blocks manage command buffering
and command processing (fetch, convert, and execute)
to ensure the last data written to any command is never
lost. Command data buffering handles incoming PMBus
writes by storing the command data to the write com-
mand data buffer and marking these commands for future
processing. The internal processor runs in parallel and
handles the sometimes slower task of fetching, converting
and executing commands marked for processing. Some
computationally intensive commands (e.g.: timing param-
eters, temperatures, voltages and currents) have internal
processor execution times that may be long relative to
PMBus timing. If the part is busy processing a command,
and new command(s) arrive, execution may be delayed
or processed in a different order than received. The part
indicates when internal calculations are in process via bit
5 of MFR_COMMON (calculations not pending). When the
part is busy calculating, bit 5 is cleared. When this bit is
set, the part is ready for another command. An example

polling loop is provided in Code Example, Wait Until Not
Busy, that ensures commands are processed in order and
simplifies error handling routines.

Clock Stretching (a.k.a. Clock Synchronization)

If communicating above 100kHz on a high speed PMBus,
we highly recommend using clock stretching to simplify
firmware logic. Clock stretching will only occur if enabled
and the bus communication speed exceeds 100kHz.

When a slave device requires more time to process a
command than the current host clock speed allows, it may
slow down the communication temporarily by stretching
the SCL line. To stretch the SCL line simply means ex-
tending the low state of the SCL line by the slave actively
pulling down the clock line regardless of whether or not
the master(s) have released it already. While the SCL line
is low, any device on the bus may additionally hold it low
preventing it from rising again until the device is ready.

This is illustrated in Figure 12. After the first byte transfer is
complete, the slave needs time to process this data before
returning the requested value. The slave then holds the
SCL line low while the interrupts are being serviced. Once
the slave is ready to continue, it releases its hold on SCL
and communications continue as normal.

Note that LT PMBus devices will only clock stretch if the
clock stretching feature is enabled and the bus speed
exceeds 100kHz. Clock stretching is enabled by setting
bit	1	of	MFR_CONFIG_ALL.	In	the	code	example	below,	
MFR_CONFIG_ALL	is	referenced	as	MFR_CONFIG_ALL_
LTC3880_0xD1 but they are equivalent.

Figure 11. Write Command Data Processing

AN135 F011

PMBus
WRITE

CMD

DATA
MUX

WRITE COMMAND
DATA BUFFER

DECODER

S

R

CALCULATIONS
PENDING

FETCH,
CONVERT

DATA
AND

EXECUTE

INTERNAL
PROCESSOR

VOUT_COMMAND

MFR_RESET

CMDS

0x00

0xFD

0x21

x1

PAGE

•
•
•

•
•
•

Application Note 135

AN135-9

an135f

When the master releases the SCL line, it must then
read back the physical state of the wire and wait until it
reaches a high level again before beginning its next clock
sequence. Many devices have hardware level support for
clock stretching that can be enabled by simply setting a
bit. If you are planning to use a software bit-banged I2C
implementation it is not difficult to add in such a check
after each transaction subroutine before continuing on.

Clock stretching can be enabled by asserting bit 1 of
MFR_CONFIG_ALL_LTC3880.	 If	 clock	 stretching	 is	 not	
enabled and you want to enable it, you must take pre-
cautions to ensure the bit is set correctly. In the Code
Example, Enabling Clock Stretching we take several steps
to ensure the bus is operating at 100kHz before writing
enabling clock stretching and then increase the speed to
400kHz when done. To change the speed of the peripheral
bus we first wait until the bus is idle. Then we change
the bus speed. Next we do a read-modify-write on the
MFR_CONFIG_ALL_LTC3880	 register	 (0xD1)	 to	 enable	
clock stretching. We then again wait for the bus to be
idle and then increase the speed up to full 400kHz speed.

A Simple Alternative to Clock Stretching with Bus
Speeds at or Below 100kHz

If your bus master does not support clock stretching we
strongly advocate that you use communication bus speeds
between 10kHz and 100kHz. This will allow for a simpler
firmware implementation, and you may disregard the next
sub-section regarding clock stretching.

Operating above 100kHz without clock stretching enabled
will require more complex firmware. Your firmware must
gracefully handle NACK’s and empty read-backs and may
have to deal with unwanted ALERT events when the device

Code Example: Enabling Clock Stretching
/*
* Enable clock stretching for robust
* communication
*/
void enable_clock_stretching(uint8 dev_addr)
{
 // Wait until I2C bus is idle
 while(I2C2CON & 0x001F > 0 ||
 I2C2STATbits.TRSTAT != 0)
 {
 Nop(); // Twiddle
 }

 I2C2BRG = 0xE6; // Set I2C to 100KHz

 // Read old value of MFR_CONFIG_ALL_LTC3880
 uint8 old_MFR_CONFIG_ALL_LTC3880_0xD1 =
 smbus_read_byte(dev_addr, 0xD1);

 // Logical OR in the clock stretching bit
 uint8 new_MFR_CONFIG_ALL_LTC3880_0xD1 =
 (old_MFR_CONFIG_ALL_LTC3880_0xD1 | 0x02);

 // Write new value of MFR_CONFIG_ALL_LTC3880
 smbus_write_byte(dev_addr, 0xD1,
 new_MFR_CONFIG_ALL_LTC3880_0xD1);

 // Wait until I2C bus is idle
 while(I2C2CON & 0x001F > 0 ||
 I2C2STATbits.TRSTAT != 0)
 {
 Nop(); // Twiddle
 }

 I2C2BRG = 0x46; // Set I2C to 400KHz
}

is busy. Robust error recovery code is required to handle
these conditions.

When the part receives a new command while it is busy,
it will communicate this fact using standard PMBus
protocol. Depending on part configuration it may either

Figure 12.

SDA

SCL 1

MSB ACKNOWLEDGEMENT
SIGNAL FROM SLAVE

ACKNOWLEDGEMENT
SIGNAL FROM RECEIVER

BYTE COMPLETE
INTERRUPT WITHIN SLAVE

CLOCK LINE HELD LOW WHILE
INTERRUPTS ARE SERVICED

2 7 8 9 1 2 3-8 9

ACK

AN135 TD05

ACKSTART OR
REPEALED START

CONDITION

STOP OR
REPEALED START

CONDITION

S
Cr
Sr

Sr
Cr
P

Sr

P

Application Note 135

AN135-10

an135f

NACK a command or return all ones (0xFF) for reads. It
may also generate a BUSY fault and ALERTB notification,
or stretch the SCL clock low. For more information refer
to PMBus Specification V1.1, Part II, Section 10.8.7 and
SMBus V2.0 Section 4.3.3.

PMBus busy protocols are well accepted standards, but can
make writing system level software somewhat complex. The
part provides three hand shaking status bits which reduce
complexity enabling robust system level communication:
MFR_COMMON bits 4, 5, and 6.

The three hand shaking status bits are in the MFR_COM-
MON register. When the part is busy executing an internal
operation, it will clear bit 6 of MFR_COMMON (chip not
busy). When the part is busy specifically because it is in
a transitional VOUT state (margining hi/lo, power off/on,
moving to a new output voltage set point, etc.) it will clear
bit 4 of MFR_COMMON (output not in transition). When
internal calculations are in process, the part will clear bit
5 of MFR_COMMON (calculations not pending). These
three status bits can be polled with a PMBus read byte of
the MFR_COMMON register until all three bits are set. A
command immediately following the status bits being set
will be accepted without NACKing or generating a BUSY

Code Example: Wait Until Not Busy
/*
 * Wait until device not busy.
 * Call this before sending each command.
 */
void wait_for_device_not_busy(uint8 dev_addr)
{
 uint8 status;

 // Wait until the device is ready
 // to receive new commands...
 while(1)
 {
 // Read status mask
 if(SMBus_read_byte(dev_addr, 0xEF,
 (uint8*)&status))
 {
 // Check for busy flags of MFR_COMMON
 // bits 4, 5, and 6
 if((status & 0x70) == 0x70)
 {
 // Device is ready
 return;
 }
 }
 } // end of while(1) polling loop
}

fault/ALERT notification. The part can NACK commands
for other reasons, however, as required by the PMBus spec
(for instance, an invalid command or data).

NACK’s and Empty Reads

A slave receiver is allowed to not acknowledge (NACK)
its slave address during I2C transactions. For example if
it’s unable to receive because it’s performing some real
time task, it may NACK. PMBus/SMBus requires devices
to always acknowledge (ACK) their own address, as a
mechanism to detect a removable device’s presence on
the bus. I2C specifies that a slave device, although it may
acknowledge its own address, may decide at some future
time, that it cannot receive any more data bytes. I2C speci-
fies that the device may indicate this by generating the
NACK on the first byte to follow.

PMBus/SMBus also uses the NACK mechanism to indicate
the reception of an invalid command or data. Since such
a condition may occur on the last byte of the transfer, it
is required that PMBus/SMBus devices have the ability
to generate the NACK after the transfer of each byte and
before the completion of the transaction.

This is important because PMBus/SMBus does not provide
any other signalling method for resending. This difference
in the use of the NACK signalling has implications on
the specific implementation of the communication port,
especially in devices that handle critical system data such
as the PMBus/SMBus host.

To make dealing with these issues simpler for the firm-
ware designer, the LTC3880 has status registers that can
be read at any time under the specified conditions with-
out the possibility of missing acknowledges indicating
its current internal status. By knowing what these bits
represent, you can then wait until the device is ready to
accept another command before issuing it. This prevents
sending transactions that will be unsuccessful by delaying
their transmission until the device is ready to accept them.

However, there are instances where the slave device can-
not indicate that it is busy with PMBus/SMBus. If the host
requests data from some register, the device ACKs the
command, and then the device becomes busy because of
an internal computation or interrupt which makes it un-
able to comply with the request, a NACK is not possible.

Application Note 135

AN135-11

an135f

Information furnished by Linear Technology Corporation is believed to be accurate and reliable.
However, no responsibility is assumed for its use. Linear Technology Corporation makes no representa-
tion that the interconnection of its circuits as described herein will not infringe on existing patent rights.

The slave is responsible for returning data but the host is
responsible for the remaining ACKs in the read transaction.

Because the device must always ACK its address there is
no chance for a slave device to signal the host that it is
not ready to send back the requested data. In this case the
only things the device can do is hold the clock line (clock
stretching) or return an empty read which is the SDA line
high or all 1’s (0xFF). Clock stretching must be enabled for
the device to use clock stretching, and in the case where
it is not enabled an empty read is the only solution. These
empty reads will not occur at or below 100kHz, or if clock
stretching is enabled.

DEVICE ADDRESSING with the LTC3880

The LTC3880 offers five different types of addressing over
the PMBus interface, specifically: 1) global, 2) device,
3) channel, 4) rail addressing and 5) alert response ad-
dress (ARA).

Global	addressing	provides	a	means	of	the	PMBus	master	
to address all LTC3880 devices on the bus. The LTC3880
global address is fixed 0x5A (7-bit) or 0xB4 (8-bit) and
cannot be disabled. Commands sent to the global address
act	the	same	as	if	PAGE	is	set	to	a	value	of	0xFF.	Com-
mands sent are written to both channels simultaneously.

Global	command	0x5B	(7-bit)	or	0xB6	(8-bit)	 is	paged	
and allows channel specific command of all LTC3880
devices on the bus.

Device addressing provides the standard means of the
PMBus master communicating with a single instance
of an LTC3880. The value of the device address is set
by a combination of the ASEL configuration pin and the
MFR_ADDRESS command. When this addressing means
is	used,	the	PAGE	command	determines	the	channel	being	
acted upon. Device addressing can be disabled by writing
a value of 0x80 to the MFR_ADDRESS.

Channel addressing provides a means of the PMBus
master addressing a single channel of the LTC3880 with-
out	using	the	PAGE	command.	The	value	assigned	to	the	
paged MFR_CHANNEL_ADDRESS determines the specific
channel the user wishes to act upon, which is useful for
multi master systems.

Example: If MFR_CHANNEL_ADDRESS for page 0 is set to
0x57 and the MFR_CHANNEL_ADDRESS for page 1 is set
to 0x54, the user can address channel 0 of the device by
performing PMBus device commands using address 0x57
(7 bit). The user can address channel 1 of the device by
performing PMBus device commands using address 0x54
(7 bit). This eliminates the user from first assigning the
PAGE	command	and	then	the	command	to	be	acted	upon.

Rail addressing provides a means of the PMBus master
addressing a set of channels connected to the same
output rail, simultaneously. This is similar to global ad-
dressing, however, the PMBus address can be dynamically
assigned by using the MFR_RAIL_ADDRESS command.
The MFR_RAIL_ADDRESS is paged, so channels can be
independently assigned to a specific rail. It is recommended
that rail addressing should be limited to command write
operations.

In addition to the standard SMBus/PMBus ARA address
and reserved bus addresses, the LTC3880 uses the address
of 0x7C for NVM error reporting. If the internal NVM of
the LTC3880 becomes invalid and cannot be automatically
repaired/rebuilt, the device will disable itself except for bus
communication. Only in this circumstance the LTC3880
will ACK the address 0x7C. The device will also set bit 3 of
MFR_COMMON to indicate that the NVM has not initialized
properly. Therefore it is recommended to leave address
0x7C open if at all possible.

All five means of PMBus addressing require the user to
employ disciplined planning to avoid addressing conflicts.

The color coded table, (Table 1), quickly shows a mapping
of restricted addresses.

Application Note 135

AN135-12

an135f

Linear Technology Corporation
1630 McCarthy Blvd., Milpitas, CA 95035-7417
(408) 432-1900 ● FAX: (408) 434-0507 ● www.linear.com LINEAR TECHNOLOGY CORPORATION 2012

LT 0312 • PRINTED IN USA

Table 1
0x00 0x01 0x02 0x03 0x04 0x05 0x06 0x07

0x08 0x09 0x0A 0x0B 0x0C 0x0D 0x0E 0x0F

0x10 0x11 0x12 0x13 0x14 0x15 0x16 0x17

0x18 0x19 0x1A 0x1B 0x1C 0x1D 0x1E 0x1F

0x20 0x21 0x22 0x23 0x24 0x25 0x26 0x27

0x28 0x29 0x2A 0x2B 0x2C 0x2D 0x2E 0x2F

0x30 0x31 0x32 0x33 0x34 0x35 0x36 0x37

0x38 0x39 0x3A 0x3B 0x3C 0x3D 0x3E 0x3F

0x40 0x41 0x42 0x43 0x44 0x45 0x46 0x47

0x48 0x49 0x4A 0x4B 0x4C 0x4D 0x4E 0x4F

0x50 0x51 0x52 0x53 0x54 0x55 0x56 0x57

0x58 0x59 0x5A 0x5B 0x5C 0x5D 0x5E 0x5F

0x60 0x61 0x62 0x63 0x64 0x65 0x66 0x67

0x68 0x69 0x6A 0x6B 0x6C 0x6D 0x6E 0x6F

0x70 0x71 0x72 0x73 0x74 0x75 0x76 0x77

0x78 0x79 0x7A 0x7B 0x7C 0x7D 0x7E 0x7F

Address PMBus Reserved Addresses

Address Available Addresses

Address LTC3880 Reserved Addresses

