
LTC2978 Firmware Programmers Getting Started Guide – Margining

Output Voltage
Revision 0.4

Author: Mike Holloway, Linear Technology

Date: 2/25/2010, 10:38 AM

Revision History:

0.4 Corrected command code for PAGE from erroneous 0x01 to correct value 0x00

0.3 Terminology Change: changed ‘command byte’ to ‘command code’

0.2 Document Formatting
0.1 Initial Draft

Purpose
The LTC2978 provides a great deal of power and configurability for custom applications. The part

additionally provides onboard non-volatile memory (NVM) or EEPROM to store and recall configuration

parameters.

This architecture allows the chip to power up and load the desired customer configuration

autonomously with no I2C/firmware interaction required.

However, there are some circumstances where a customer may wish to author firmware to

communicate with the part. This document provides a quick overview of one common firmware task –

Margining the output voltage.

LTpowerPlay™ is a powerful tool that can be used to understand how to author the firmware to talk to

the LTC2978. You can download LTpowerPlay™ from http://ltpowerplay.com.

Margining the Output Voltage
Margining can be accomplished by programming 3 paged registers. VOUT_MARGIN_HIGH,

VOUT_MARGIN_LOW, and OPERATION. The first two registers set up the margin levels – that is,

VOUT_MARGIN_HIGH programs the voltage to which the output will margin when the device is

margining high.

In order to actually margin the output voltage, you need to send the OPERATION register to one of the

Margin* values highlighted in yellow below.

Note that the LTpowerPlay™ GUI shows you the hex values corresponding to each particular human

readable value. For example, MarginHigh is equivalent to the hex value 0xA8.

Also note the ‘Register Information’ tab in the GUI. This tab shows you more detailed information about

the selected register which can be a great help in understanding how to author the firmware.

Below is an example of the Register information for the OPERATION register when page 3 is selected:

Note that the information in this tab is ‘context sensitive’. In other words, it shows you detailed

information based on what is selected in the GUI. In this particular case it shows the steps required to

write the OPERATION register to the value 0xA8 (Margin High) for page 3 for the chip at 7-bit I2C

address 0x5C.

Because the OPERATION is a paged register, and page 3 is selected in the GUI, the examples include

instructions on writing the PAGE Register to the value 3. The view shows example C code as well as

detailed SMBus protocol diagrams. The protocol diagrams follow the conventions established in the

SMBus specification. The protocol diagram legend, or element key is shown in the figure below:

Figure: SMBus packet protocol diagram element key

So in our specific case the steps required to command channel 3 of device at 7-bit I2C address 0x5C to

margin it’s voltage to its pre-programmed VOUT_MARGIN_HIGH level are as follows:

Write PAGE to 3

 <Start Condition>

 Transmit Byte 0xB8 (0x5C<<1 with Write bit set to 0)

 Transmit Byte 0x00 (command code for PAGE register)

 Transmit Byte 0x03 (to select PAGE=3)

 <Stop Condition>

Write OPERATION to ‘MarginHigh’ (0xA8)

 <Start Condition>

 Transmit Byte 0xB8 (0x5C<<1 with Write bit set to 0)

 Transmit Byte 0x01 (command code for OPERATION register)

 Transmit Byte 0xA8 (to select OPERATION=’MarginHigh’)

 <Stop Condition>

When the device receives the above sequence, it will margin the channel 3 output to it’s pre-

programmed value for VOUT_MARGIN_HIGH.

Now let’s say we want to margin the output voltage to 2.0V. We need to program the

VOUT_MARGIN_HIGH level to be 2.0V. Select page 3 in the GUI, and select the paged

VOUT_MARGIN_HIGH register. Type ‘2.0’ and press Enter. Now view the register information tab:

Note that because VOUT_MARGIN_HIGH is a paged register, this view also tells us that we have to write

the PAGE register to select PAGE=3. It also tells us that the command code for VOUT_MARGIN_HIGH is

0x25, and the data type/format is ‘LinearFloat16’. This is a simple PMBus numeric format that

represents an unsigned 16-bit mantissa which when multiplied by 2^(-13) determines a voltage. The

value 2V is thus represented by the mantissa 2*8192, or 16384, or 0x4000 hex.

Note in the protocol diagram that two bytes are sent to transfer the 16-bit ‘word’ to the slave. In SMBus

the lower byte is always sent first. So in order to write the VOUT_MARGIN_HIGH register to 2V

(assuming PAGE has already been written), the following would occur on the I2C bus:

Write VOUT_MARGIN_HIGH to ‘2.0V’ (0x4000)

 <Start Condition>

 Transmit Byte 0xB8 (0x5C<<1 with Write bit set to 0)

 Transmit Byte 0x25 (command code for VOUT_MARGIN_HIGH register)

 Transmit Byte 0x00 (lower byte of 0x4000)

 Transmit Byte 0x40 (upper byte of 0x4000)

 <Stop Condition>

The full set of commands required to margin the output voltage of channel 3 of the chip at 7-bit I2C

address 0x5C voltage to 2.0V is as follows:

See the protocol diagrams above to see how this translates into primitive I2C elements on the wire.

// write PAGE to 3

smbus_write_byte(0x5C, 0x00, 0x03);

// write VOUT_MARGIN_HIGH to 2V

smbus_write_word(0x5C, 0x25, 0x4000);

// write OPERATION to 0xA8

smbus_write_byte(0x5C, 0x01, 0xA8);

